
What to Do When the Bug is in Someone
Else's Code

Paul Ganssle

This talk on Github: pganssle-talks/pycon-us-2022-upstream-bugs

https://github.com/pganssle-talks/pycon-us-2022-upstream-bugs
https://creativecommons.org/publicdomain/zero/1.0/

⚠ Warning ⚠

A Bug in Someone Else's Code
import pandas as pd

def f(x, a):
 return x.sum() + a

df = pd.DataFrame([1, 2])

print(df.agg(f, 0, 3))

A Bug in Someone Else's Code
import pandas as pd

def f(x, a):
 return x.sum() + a

df = pd.DataFrame([1, 2])

print(df.agg(f, 0, 3))

Running this fails with pandas == 1.1.3:
$ python pandas_example.py
Traceback (most recent call last):
 File ".../pandas/core/frame.py", line 7362, in aggregate
 result, how = self._aggregate(func, axis=axis, *args, **kwargs)
TypeError: _aggregate() got multiple values for argument 'axis'

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "pandas_example.py", line 8, in <module>
 print(df.agg(f, 0, 3)) # Raises TypeError
 File ".../pandas/core/frame.py", line 7368, in aggregate
 raise exc from err
TypeError: DataFrame constructor called with incompatible data and dtype:
 _aggregate() got multiple values for argument 'axis'

A Bug in someone else's code

A Bug in someone else's code

The Right Thing To Do™
File an issue upstream

More details about the prac�cal aspects: h�ps://ganssle.io/talks/#contribu�ng-oss-pydata2018

https://ganssle.io/talks/#contributing-oss-pydata2018

The Right Thing To Do™
File an issue upstream

More details about the prac�cal aspects:

Submit a patch to fix the issue upstream

h�ps://ganssle.io/talks/#contribu�ng-oss-pydata2018

https://ganssle.io/talks/#contributing-oss-pydata2018

The Right Thing To Do™
File an issue upstream

More details about the prac�cal aspects:

Submit a patch to fix the issue upstream
Wait for release

h�ps://ganssle.io/talks/#contribu�ng-oss-pydata2018

https://ganssle.io/talks/#contributing-oss-pydata2018

What can go wrong?
Produc�on deadlines
Long upstream release cycles
Long deployment cycles in-house

What can go wrong?
Produc�on deadlines
Long upstream release cycles
Long deployment cycles in-house

One-off Workarounds

Reasonable if:
You only hit the bug in one place.
The workaround is very simple
You are indifferent between the bug-triggering and workaround code.

def f(x, a):
 return x.sum() + a

df = pd.DataFrame([[1, 2], [3, 4]])

Passing `a` by position doesn't work in pandas >=1.1.0,<1.1.4
print(df.agg(f, 0, 3))
print(df.agg(f, 0, a=3))

Wrapper functions

Encapsulates complicated workaround logic.
Provides an easy target for later removal.

def dataframe_agg(df, func, axis=0, *args, **kwargs):
 """Wrapper function for DataFrame.agg.

 Passing positional arguments to ``func`` via ``DataFrame.agg`` doesn't work
 in ``pandas >=1.1.0,<1.1.4``. This wrapper function fixes that bug in
 affected versions and works normally otherwise.
 """

 if args:
 def func_with_bound_posargs(arg0, **kwargs):
 return func(arg0, *args, **kwargs)

 func = func_with_bound_posargs

 return df.agg(func, axis=axis, **kwargs)

print(dataframe_agg(df, f, 1, 3))

Wrapper functions: Opportunistic upgrading

Opportunistic upgrading

Hack is only triggered if you otherwise would have triggered the bug!

def dataframe_agg(df, func, axis=0, *args, **kwargs):
 """Wrapper function for DataFrame.agg.

 Passing positional arguments to ``func`` via ``DataFrame.agg`` doesn't work
 in ``pandas >=1.1.0,<1.1.4``. This wrapper function fixes that bug in
 affected versions and works normally otherwise.
 """
 if args and _has_pandas_bug():
 def func_with_bound_posargs(arg0, **kwargs):
 return func(arg0, *args, **kwargs)

 func = func_with_bound_posargs
 return df.agg(func, axis, *args, **kwargs)

Opportunistic upgrading

By feature detection

import functools

import pandas as pd

@functools.lru_cache(1) # Need to execute this at most once
def _has_pandas_bug():
 def f(x, a):
 return 1

 try:
 pd.DataFrame([1]).agg(f, 0, 1)
 except TypeError:
 return True

 return False

Opportunistic upgrading

By feature detection

import functools

import pandas as pd

@functools.lru_cache(1) # Need to execute this at most once
def _has_pandas_bug():
 def f(x, a):
 return 1

 try:
 pd.DataFrame([1]).agg(f, 0, 1)
 except TypeError:
 return True

 return False

By version checking
import functools

@functools.lru_cache(1) # Need to execute this at most once
def _has_pandas_bug():
 from importlib import metadata # Python 3.8+, backport at importlib_metadata
 from packaging import Version # PyPI package

 return Version("1.1.0") <= metadata.version("pandas") < Version("1.1.4")

Opportunistic upgrading at import time

if _has_pandas_bug():
 def dataframe_agg(df, func, axis=0, *args, **kwargs):
 """Wrapper function for DataFrame.agg.

 Passing positional arguments to ``func`` via ``DataFrame.agg`` doesn't work
 in ``pandas >=1.1.0,<1.1.4``. This wrapper function fixes that bug in
 affected versions and works normally otherwise.
 """

 if args:
 def func_with_bound_posargs(arg0, **kwargs):
 return func(arg0, *args, **kwargs)

 func = func_with_bound_posargs

 return df.agg(func, axis=axis, **kwargs)
else:
 dataframe_agg = pd.DataFrame.agg

print(dataframe_agg(df, f, 1, 3))

Real-life Examples
1. Feature backports

importlib_resources
Most things in the backports namespace.

2. six: Pre�y much all wrapper func�ons to write code that works with Python 2 and 3.

3.
Wrapper classes that mimic pytz's interface
Uses zoneinfo and dateutil under the hood
No pytz dependency!
For helping to migrate off pytz.

pytz-deprecation-shim

https://pytz-deprecation-shim.readthedocs.io/en/latest/

Real-life Examples
1. Feature backports

importlib_resources
Most things in the backports namespace.

2. six: Pre�y much all wrapper func�ons to write code that works with Python 2 and 3.

3.
Wrapper classes that mimic pytz's interface
Uses zoneinfo and dateutil under the hood
No pytz dependency!
For helping to migrate off pytz.

pytz-deprecation-shim

https://pytz-deprecation-shim.readthedocs.io/en/latest/

Monkey Patching

Intro to Monkey Patching

Affects anyone using the namespace:

import random

flabs = __builtin__.abs # Store the original method

def six_pack(x):
 """Nothing is truly absolute. Embrace ambiguity."""
 abs_value = flabs(x)
 if random.random() < 0.8:
 return abs_value
 else:
 return -abs_value

__builtin__.abs = six_pack # Use our new method instead of `abs()`

print([abs(3) for _ in range(10)])
[3, 3, 3, 3, -3, -3, 3, -3, -3, 3]

>>> from fractions import Fraction
>>> set(map(hash, [Fraction(110, 3) for _ in range(100)]))
{768614336404564687, 1537228672809129264}

How does this help us?

Fixes the issue globally and transparently.
May fix the issue in other code you don't control.

from functools import wraps
import pandas as pd

if _has_pandas_bug():
 _df_agg = pd.DataFrame.agg
 @wraps(pd.DataFrame.agg)
 def dataframe_agg(df, func, axis=0, *args, **kwargs):
 if args:
 def bound_func(x, **kwargs):
 return func(x, *args, **kwargs)
 func = bound_func
 return _df_agg(df, func, axis=axis, **kwargs)

 pd.DataFrame.agg = dataframe_agg

Why is this a terrible idea?

Ac�on at a distance.
No one else is expec�ng you to do this.
O�en �ghtly coupled to implementa�on details.

Scoping the patch correctly

Mind your namespaces!

Contents of pimodule.py
import math

def pi_over_2() -> float:
 return math.pi / 2

Contents of pimodule2.py
from math import pi

def pi_over_2() -> float:
 return pi / 2

import math
import pimodule
import pimodule2

math.pi = 3 # Pi value is too high imo

print(pimodule.pi_over_2()) # 1.5
print(pimodule2.pi_over_2()) # 1.5707963267948966

Scoping the patch correctly

Mind your namespaces!

Contents of pimodule.py
import math

def pi_over_2() -> float:
 return math.pi / 2

Contents of pimodule2.py
from math import pi

def pi_over_2() -> float:
 return pi / 2

import math
import pimodule
import pimodule2

math.pi = 3 # Pi value is too high imo
pimodule2.pi = 3

print(pimodule.pi_over_2()) # 1.5
print(pimodule2.pi_over_2()) # 1.5

Scope as tightly as possible

If you only need the patch to apply to your code, use a context manager:

from contextlib import contextmanager

@contextlib.contextmanager
def bugfix_patch():
 if _needs_patch(): # Don't forget opportunistic upgrades!
 _do_monkey_patch()
 yield
 _undo_monkey_patch()
 else:
 yield

Use as a context manager
def f():
 unaffected_code()

 with bugfix_patch():
 affected_code()

Or as a decorator
@bugfix_patch
def affected_function():
 ...

Real-life examples
setuptools extensively patches distutils on import

...and pip invokes the monkey patch even if you don't import setuptools!

Take Heed: This was expedient at the �me, but setuptools has been working to unravel this for years.

def patch_all():
 # we can't patch distutils.cmd, alas
 distutils.core.Command = setuptools.Command

 has_issue_12885 = sys.version_info <= (3, 5, 3)

 if has_issue_12885:
 # fix findall bug in distutils (http://bugs.python.org/issue12885)
 distutils.filelist.findall = setuptools.findall

 needs_warehouse = (
 sys.version_info < (2, 7, 13)
 or
 (3, 4) < sys.version_info < (3, 4, 6)
 or
 (3, 5) < sys.version_info <= (3, 5, 3)
)

 if needs_warehouse:
 warehouse = 'https://upload.pypi.org/legacy/'
 distutils.config.PyPIRCCommand.DEFAULT_REPOSITORY = warehouse
 ...

Vendoring
What is vendoring?

Vendoring
What is vendoring?

Vendoring
What is vendoring?

Vendoring
What is vendoring?

$ tree setuptools/_vendor/
setuptools/_vendor/
├── __init__.py
├── ordered_set.py
├── packaging
│ ├── __about__.py
│ ├── _compat.py
│ ├── __init__.py
│ ├── markers.py
│ ├── py.typed
│ ├── requirements.py
│ ├── specifiers.py
│ ├── _structures.py
│ ├── tags.py
│ ├── _typing.py
│ ├── utils.py
│ └── version.py
├── pyparsing.py
└── vendored.txt

1 directory, 16 files

vendoring, n., including a copy of one or more dependencies in a project's source code.

How to vendor a package

1. Copy the source code into your project tree somewhere (e.g. under myproject._vendored).
2. Update references: squalene → myproject._vendored.squalene

How to vendor a package

1. Copy the source code into your project tree somewhere (e.g. under myproject._vendored).
2. Update references: squalene → myproject._vendored.squalene

3. Apply any patches to your local copy.

How to vendor a package

1. Copy the source code into your project tree somewhere (e.g. under myproject._vendored).
2. Update references: squalene → myproject._vendored.squalene

3. Apply any patches to your local copy.
Advantages

No chance that your hack will break if the dependency is upgraded.
Scoped to your package only — no modifying of globals.
Allows two packages to use otherwise incompa�ble versions of a shared dependency.

Cautions

Reference to the package's top-level name within the vendored package will s�ll hit the global package:

Solving this may require one of:

Extensive modifica�ons to the source.
Import hooks.
Messing around with sys.path.

>>> import squalene
>>> from my project._vendored import squalene as vendored_squalene
>>> squalene.magnitude.Magnitude(1) < squalene.magnitude.Magnitude(2)
True
>>> vendored_squalene.magnitude.Magnitude(1) < vendored_squalene.magnitude.Magnitude(2)
True
>>> squalene.magnitude.Magnitude(1) < vendored_squalene.magnitude.Magnitude(2)
...
TypeError: '<' not supported between instances of 'squalene.magnitude.Magnitude'
 and 'myproject._vendored.squalene.magnitude.Magnitude'
>>> squalene.magnitude.Magnitude is myproject._vendored.squalene.magnitude.Magnitude
False

Contents of _vendored/squalene/world_destroyer.py
from .magnitude import WORLD_DESTROYING_MAGNITUDE
from squalene.magnitude import Magnitude

def destroy_world(world, start_magnitude=None):
 magnitude = start_magnitude or Magnitude(3)
 while magnitude < WORLD_DESTROYING_MAGNITUDE:
 magnitude.increase(1)

Downsides
Hard to implement.
Hard to maintain.
Has a tendency to be leaky in one way or another (import system wasn't really built with this in mind).
Doesn't work well for any dependency that is part of the public API.

Real-life examples

pip and setuptools vendor all their dependencies to avoid bootstrapping issues (no patching).
Manipulates namespace resolu�on to get name resolu�on to work.

invoke vendors all its dependencies (including separate Python 2 and 3 trees for pyyaml)
No dependencies have been updated in > 5 years ☹

This talk!
reveal.js and jekyll-revealjs are vendored into the source.

Real-life examples

pip and setuptools vendor all their dependencies to avoid bootstrapping issues (no patching).
Manipulates namespace resolu�on to get name resolu�on to work.

invoke vendors all its dependencies (including separate Python 2 and 3 trees for pyyaml)
No dependencies have been updated in > 5 years ☹

This talk!
reveal.js and jekyll-revealjs are vendored into the source.
jekyll-reveal even carries a patch! 🤦

Maintaining a Fork

Accomplishing this: distros / monorepos
Mostly accomplished with .patch files.
These can be managed by quilt, see:

h�ps://raphaelhertzog.com/go/quilt
From f9c06582c58e01deab10c6fcc081d4d7cb0f1507 Mon Sep 17 00:00:00 2001
From: Barry Warsaw <barry@python.org>
Date: Fri, 18 Nov 2016 17:07:47 -0500
Subject: Set --disable-pip-version-check=True by default.

Patch-Name: disable-pip-version-check.patch

 pip/cmdoptions.py | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/pip/cmdoptions.py b/pip/cmdoptions.py
index f71488c..f75c093 100644
--- a/pip/cmdoptions.py
+++ b/pip/cmdoptions.py
@@ -525,7 +525,7 @@ disable_pip_version_check = partial(
 "--disable-pip-version-check",
 dest="disable_pip_version_check",
 action="store_true",
- default=False,
+ default=True,
 help="Don't periodically check PyPI to determine whether a new version "
 "of pip is available for download. Implied with --no-index.")

https://raphaelhertzog.com/go/quilt

Accomplishing this: distros / monorepos
Mostly accomplished with .patch files.
These can be managed by quilt, see:

h�ps://raphaelhertzog.com/go/quilt
From f9c06582c58e01deab10c6fcc081d4d7cb0f1507 Mon Sep 17 00:00:00 2001
From: Barry Warsaw <barry@python.org>
Date: Fri, 18 Nov 2016 17:07:47 -0500
Subject: Set --disable-pip-version-check=True by default.

Patch-Name: disable-pip-version-check.patch

 pip/cmdoptions.py | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/pip/cmdoptions.py b/pip/cmdoptions.py
index f71488c..f75c093 100644
--- a/pip/cmdoptions.py
+++ b/pip/cmdoptions.py
@@ -525,7 +525,7 @@ disable_pip_version_check = partial(
 "--disable-pip-version-check",
 dest="disable_pip_version_check",
 action="store_true",
- default=False,
+ default=True,
 help="Don't periodically check PyPI to determine whether a new version "
 "of pip is available for download. Implied with --no-index.")

Can also accomplish this with sed or other scripts in simple cases:
Excerpt from an Arch Linux PKGBUILD
prepare() {
 cd $_pkgname-$pkgver

 sed -i 's|../../vendor/http-parser/http_parser.h|/usr/include/http_parser.h|' $_pkgname/parser/cparser.pxd
}

https://raphaelhertzog.com/go/quilt

Downsides
You are maintaining a fork that upstream doesn't know about.

Upda�ng all your patches adds fric�on to the upgrade process.

No guarantees of compa�bility.

Real-life Examples
Nearly every Linux distro, either heavily (e.g. Debian) or lightly (e.g. Arch).

conda and conda-forge packages.

Most big companies.

Real-life Examples
Nearly every Linux distro, either heavily (e.g. Debian) or lightly (e.g. Arch).

conda and conda-forge packages.

Most big companies.

Success story

Strategy Recap
Patching upstream 💖

Pros:
You fix the bug for everyone
Nothing to maintain a�erwards (for you...)
Improves your rela�onship with the maintainers of
so�ware you use (hopefully)

Cons:
Delays!
You have to convince someone to accept your p
(or fix the bug)

Wrapper functions 🆗
Pros:

Helps maintain cross-version compa�bility
Easy to remove when the need is done
Can opportunis�cally upgrade
Can roll out immediately

Cons:
Only works when it's possible to work around t
bug.
Only works for the code you are currently wri�

Monkey patching 🙈
Pros:

Make targeted global fixes.
Doesn't complicate packaging or deployment.

Cons:
Hard to reason about.
Not likely to be compa�ble across versions.
Can cause compa�bility problems with other us
the same library.

Vendoring ☣
Pros:

Can unblock dependency resolu�on issues.
Isolates any changes from the wider system.

Cons:
Complicated to implement right.
Doesn't work well when the vendored package
part of your public interface.
Tooling support is very weak.

Maintaining a fork ☢
Pros:

Rela�vely easy to implement in some systems.
Tools exist for this.

Cons:
Upstream doesn't know about your fork!
Adds fric�on with upgrades.
Compa�bility degrades over �me.

Final Thoughts

This photo doesn't really match what I'm talking about, but I wanted to show off this rad picture of a Cardinal I took.

